MPI Version of the Serial Code
with One Dimensional
Decomposition

Luke Lonergan
High Performance Technologies, Inc.

Decemher 8 190K

Overview

We will choose one of the two dimensions
and subdivide the domain to allow the
distribution of the work across a group of
distributed memory processors

We will focus on the principles and
techniques used to do the MPIl work in the
model

STEP1: introduce the MPI environment

e cd /mpi_1d/stepl
e compile and run the serial code

10 minutes

o edit the file stepl.f . (only the main program)

- Include the mpi header file

- declare integer variables size, rank, lerr

- Initialize MPI
- determine process group size

- determine the rank of calling process

- terminate MPI environment

STEP1: introduce the MPI environment
(continued)

e compile stepl.f:
mpif77 stepl.f -o stepl.x

 run the executable on one processor
mpirun -np 1 stepl.x

Domain Discretization

0

<
I

Structure of the Serial Code

namelist: Lx, Ly,a, B,y

grid . AX, Ay

forcing : - asin(mtl(j-1)* Ay/ Ly)
initial ~ : Y(i, J) = 0.0 fori=1,nx,j=1,ny

bcs 2 W(1n) = W(iLny) = W(w)) = P(nx,j)=0

Structure of the Serial Code (continued)

begin iteration: It = 1, itcnt

o Jacobl : y_new(j) = al*@(i+L) + a2* @ (i-1j)+ ad* @i, j+1) +

ad* (i, j-1 -ab*f(i,j); 1=2,nx-1,j=2,ny-1
e residual : (wij) -w new(,j))oOD2 : i=2,nx-1,j=2,ny-1
* COpy w(ij) =w_new(i, j)

end Iteration

ID Decomposition

Physical domain is sliced into slabs so that computation
In each slab will be handled by different processors.

P(nx, ny) Q(nx, ny_local) .
N i —
® ® ® ® ® ® ® |O ® ® ® ® ®

L.|J(nX, ny_Iocai)

Jacobl Iteration on Decomposed Data

P _new(l, j) = al*(i+1,)) + a2* @ (i-1,))+a3* (i, j+1) + ad* (i, j-1) -a5*f(i, j)

1=2,nx-1; J=2,ny-1 1=2,nx-1 ;j=2,ny local-1
rank = 1

° ° o o o [[[jo o o ° ° ° o o
® ® ® ® ® ® ® ® 2 o o e)) o ran!k_: O

() () a...... e..... o () () () o ° e...... a () ° [

() () o o o () () () ® o o () () () o o

Y(nx, ny) Y(nx, ny local)

The “ghost” rows

1=2, nx-1; J=2, ny-1 1=2,nx-1 ;J=2, -1

[) ([) [) [) [) [) [) b [) [) [) [) [) ([) ([)
[) [) [) [) [) o [) |) [) [) [) [) [) [) ()
rank = 1
[) [) [) [) [) [) [) 1) [) [) [) [) [) [) ()
[) [) [) [) [) [) [) P [) [) [) [) [) [) ()
[) [) [) [) [) [) [) @ [) @unnuns Wruunns ® [) [) ()
[) [) [) [) [) [) [) ® [) [) ® [) [) [) ()
rank =0
[) [) [) [) [) [) [) ® [) [) [) [) [) [) o
[) [) [) [) [) [) [) @ [) [) [) [) [) [) [)

rank = 3

rank = 2

rank = 1

rank = 0

On defining

myny

- myny

- myny

- myny

One choice:

STEP2: 1d decomposition of the arrays

In the serial code

10 minutes
e cd /mpild step?
o editstep2.f (step2.f =stepl.f + comments)
- declare integer variable nprocs
- for now set parameter(nprocs=1)
- declare integer variable
- set parameter()

STEP2: 1d decomposition of the arrays

In the serial code (continued)

12 minutes
o edit /mpild /step2/ step2.f (continue)
- change ny to everywhere In the code

(EXCEPT iIn subroutine grid and in the

parameter statement)

e compile and run step2.fwithnp =1

Decomposing the Forcing Function

f(1,)) = —asin(mlyQ)/Ly)

y) = ystart+ (J-1) Ay
ystart = rankCL{myny-2) Ay

STEP3: decomposing the forcing function

e cd /mpi_1d/step3

8 minutes

o edit the file step3.f to make the following

changes in routine “forcing’:

- Include rank as an argument of “forcing”

- define ystart = rank * (myny-2) * dy

- replace the statement for yj with
y] = ystart + (J-1)* dy

e compile and run the code withnp =1

Decomposing the Horizontal Boundary

Conditions
: P If (rank .eq. size-1)
Q(i,ny) =0;1=1,nx w(i,ny) = 0;i=1,nx
e e e <
oooooooooooooo 2.............-
I
Wi, 1) =0 = 1,nx 0 | o

If (rank .eq. 0)
W(,1) =0;1=1,nx

STEP4: Decomposing the Horizontal
Boundary conditions

5 minutes

e cd /mpild_step4d

o edit the file step4.f to make the following changes
In the routine “bcs”:

- Include rank and size as arguments of “bcs”

STEP4: Decomposing the Horizontal

Boundary conditions

5 minutes

- split the do loop In bcs for x-boundaries into two

loops: one for | = 0 and the other for | = myny

-set(1,1)=0;1=1,nxonlyifrank =0

- set Y(1, myny) =0 ; 1 =1, nxonly Iif rank = size-1

e compile and run the code withnp =1

rank =3

rank = 2

rank = 1

rank =0

Who are my neighbors ?

rank of my neighbor above

my_rank+1

rank of my neighbor below

my_rank-1

STEPS: finding the ranks of neighbors

3 minutes

e cd /mpi-1d/step5

e edit the file neighbors.f :
-modify the routine so that it will take rank
as Input and return integers “up” and “down”
where up =rank + 1 & down =rank - 1

STEPG6: Exchange the “Ghost Data”

Across the Processors

cd /mpi_1d/step6

e edit the file exc
- Include the m

3 minutes

nange.f

01 header file

- declare two status arrays: statusl and status?

(Integer type,

with dimension MPI_STATUS_SIZE)

myny r

rank 3

Exchanging the Ghost Data - (1)

55555 ® ® ® ® ® ®

myny :

rank 2

myny

rank 1

myny

rank O

[) ® [) ® [) [) ® [) ® e e e

If(rank .It. size-1)send
the last "interior”

row (1.e.(1, myny-1))

: to processor above
>
>

STEPG6a: sending (myny-1)th row to the
PrOCESS0T abOVE

4 minutes

e cd mpi-1d/step6

 edit the file exchange.f to include the following
MP1_SEND call at the indicated location.

Exchanging the Ghost Data - (i)

] If(rank .gt. 0) receive
rANK3 |0 e« o o o o o o o o o o o o a row of “real” type
— elements tagged 999
myny : from the processor
o :::::::::::::: below and save it in
A NN N N NN the location starting a
: (L)
mynys
T

1
myny

T J
1le o o o o o o o o o o e o

STEPGD: receiving the first “ghost row”
from processor below

4 minutes

e cd mpi-1d/step6

 edit the file exchange.f to include the following
MPI1_RECV call at the indicated location.

Exchanging the Ghost Data - (Iit)

If(rank .gt. 0) send the

e =y first "interior” row
& (re.y(, 2)) tothe

p
p

processor below

STEPGC: sending the second row to the

processor below

e cd mpi-1d/step6
o edit the file exchange.f to include the

4 minutes

following MPI_SEND call at the indicated

location.

Exchanging the Ghost Data - (Iv)

If(rank .It. Size-1)
receive a row of
“real” type
elements tagged
888 from the
processor above
and save It In the
location starting at

P(1,myny)

STEPGd: receiving the last “ghost row”
from processor above

4 minutes

e cd mpi-1d/step6

 edit the file exchange.f to include the
following MP1_RECV call at the indicated
location.

STEPGd: receiving the last “ghost row”
from processor above (continued)

e CALL MPI_RECV(psI(1,myny),
nx,
MPI REAL,
down,
888,
status?,
MPI_COMM_WORLD, ierr)

STEPG6: a final check

e cd /mpi-1d/step6

e compare your exchange.f with
/mpi_1d/step6/completed/exchange.f

1 minute

STEP7: Append neighbors.f and
exchange.f to step4.f

4 minutes

e cd /mpi_1d/step7

o edit the file step?.f
(step/.f = stepd.f + neighbors.f + exchange.f +

+ additional comments)
- declare integers up & below In the main program

- Insert a call to “neighbors” just before starting
the iteration.

STEP7: Append neighbors.f and
exchange.f to step4.f (continued)

4 minutes

e cd /mpi_1d/step7

e - Insert a call to “exchange” inside the Iteration

loop - just before calling jacobi

e compile and run your code, but still withnp =1

STEPS8: collecting the local residuals and
reducing it to a global value

4 minutes

e cd /mpi_1d/step8

o edit the file step8.f to make the following changes
In the routine “residual”

- Include the mpi header file
- declare a new real variable Inorm: for local norm

- replace gnorm with Inorm in the rest of the
routine EXCEPT In the sqrt statement

STEPS8: collecting the local residuals and
reducing it to a global value (continued)

8 minutes

e use MPI_ALLREDUCE to collect the local
residuals, to reduce It to a global value through a
pre-defined operation and to distribute It back to
all processors.

STEPS8: collecting the local residuals and
reducing it to a global value (continued)

e CALL MPI_ALLREDUCE(local buffer (Inorm),

global value to be received (gnorm),

of elements In local buffer (1),

datatype (MPI_REAL),

reduction operation (MPI_SUM),
MPI_COMM_WORLD, ierr)

e Insert the call in residual - before computing sqrt

e compile and run the code, but still withnp =1

Step9 : The (Almost) Final Step

8 minutes

e cd /mpi_1d/step9

e edit step9.f to make the following changes
In the main program
- set nprocs =4 (finally 1)
- modify the print statement so that only
processor 0 prints the output

» compile and run the code with np = 4

Residuals from the serial code and the

mpi_1d version- What happened here ?

it cnt Serial Code mpi_1d

1 1169699.38 1169729.5
2 1167068.75 1167098.12
3 1165272.38 1165305.12
4 1163841.5 1163839.38
5 1162584.12 1162584.12
6 1161434. 1161446.88
7 1160383.62 1160407.75
8 1159442.88 1159423.75
9 1158526.38 1158516.88
10 1157625.25 1157664.

Residuals from the serial code and the
mpi_1d version- What happened here ?

Hint: sensitivity to the order of summation

STEP10:The Finishing Touch

4 minutes

o cd /mpi_1d/stepl0

 edit stml _serial.f to make the following changes

IN the routine residual:

-comment out gnorm=gnom-+[Y(i,j)-P_new(i,j)]

2

- Insert gnorm=max (gnorm, abs(y(1,J)-¥Y_new(l,})))

- comment out gnorm = sqrt(gnorm)

« compile and run this modified version of
stml_serial.f

STEP10: The Finishing Touch (continued)

o 4 minutes

o edit the file step10.f to make the following
changes in the routine “residual
-comment out the statement for Inorm
- replace It with

Inorm = max(Ilnorm, abs((1,))-w_new(l,})))
- comment out gnorm = sqrt(gnorm)

STEP10: A Finishing Touch (continued)

o 2 minutes

- compile and run the code with np = 4
- How does the results compare with that of the

modified stml_serial.f

* You can now rename stepl0.f to stml_mpild.f

